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The Shake-and-Bake method, as implemented in the computer program SnB,

has been applied to simulated reference-beam data for the small protein

crambin at several resolutions in the range 1.5±3.0 AÊ . Sets of triplet invariants

were generated having simulated mean triplet-phase errors from 0 to 60�.
Provided that these errors were no larger than 40�, it was possible (at all

resolutions tested) to ®nd trial sets of individual Bragg phases with mean errors

of 40±45�. At 1.5 AÊ , this could be achieved using only a single reference-beam

data set. Peak picking provided useful phase constraints even at the lowest

resolution tested. These results suggest that direct methods may be useful in

conjunction with reference-beam data at resolutions lower than 1:2AÊ .

1. Introduction

Shake-and-Bake (Weeks et al., 1994) is a multisolution or

multitrial direct-methods procedure that alternates reciprocal-

space phase re®nement with peak picking in real space to

impose constraints through a physically meaningful inter-

pretation of the electron density. Phase re®nement can utilize

either the tangent formula (Karle & Hauptman, 1956) or the

technique of parameter shift (Bhuiya & Stanley, 1963) to

reduce the value of the minimal function (Debaerdemaeker

& Woolfson, 1983; Hauptman, 1991; DeTitta et al. 1994).

Although the Shake-and-Bake approach has increased, by an

order of magnitude, the size of structures solvable by direct

methods (Deacon et al., 1998), these successes have been

limited, with few exceptions, to structures for which the

diffraction data can be measured to at least 1.2 AÊ . The

hirustasin structure, which can be determined using 1.55 AÊ

truncated data, currently holds the record for the lowest-

resolution successful application of direct methods to a

complete structure (UsoÂ n et al., 1999). On the other hand, 3 AÊ

isomorphous or anomalous difference data are suf®cient to

permit successful Shake-and-Bake applications to large

substructures such as the 70 site selenomethionine derivative

of a 370 kDa epimerase enzyme (Deacon et al., 1999).

The so-called triplet structure invariants,

�HK � 'H � 'K � 'ÿHÿK; �1�
where the 's are the phases of the corresponding structure

factors, provide the foundation for phase-determining rela-

tionships, such as the tangent formula or the minimal function,

used in direct methods. Successful applications rely on the use

of accurate probabilistic estimates, provided by the Cochran

(1955) distribution, for the values of the triplet invariants and

their corresponding cosines (Germain et al., 1970). Simulation

experiments have shown that the structure of the small protein

crambin can be solved by Shake-and-Bake even at 2 AÊ if the

invariants used are accurate enough (Weeks et al., 1998).

Therefore, the primary breakdown of Shake-and-Bake during

low-resolution applications seems to occur in reciprocal space,

and such failures could probably be overcome if a suf®cient

number of accurate invariant values were available.

Recent work in the ®eld of multiple-beam diffraction

provides grounds for hope that a general method for experi-

mentally measuring phase information can be found. For

example, it has been shown that triplet phases,

�HG � ÿ'H � 'G � 'HÿG; �2�

can be measured for lysozyme with a mean error of approxi-

mately 20� (Weckert et al., 1993; Weckert & HuÈ mmer, 1997).

In addition, direct methods strengthened by simulated known

triplet phases have been used to redetermine the structure of

rubredoxin at 1.54 AÊ (Mo et al., 1996) as well as the structure

of bovine pancreatic trypsin inhibitor at resolutions as low as

2 AÊ (Mathiesen & Mo, 1997, 1998). Unfortunately, the one-

at-a-time methods currently used to measure triplet phases

seriously limit practical applications. However, the recently

proposed reference-beam diffraction method (Shen, 1998,

1999), in which a single Bragg re¯ection (G) serves as a

reference beam and is common to many simultaneously

recorded triplet phases, would permit large numbers of these

phases to be measured quickly.

As illustrated in Fig. 1, the geometry of the reference-beam

experiment is a simple conceptual modi®cation of the direct-



beam geometry used in the conventional oscillation camera

set-up. Instead of being perpendicular to the incident X-ray

beam, the oscillation axis is tilted by the Bragg angle (�G) of a

strong reference re¯ection (G) that is oriented to coincide

with the oscillation axis. In this way, re¯ection G can be fully

excited throughout the crystal oscillation or rotation. The

intensities of all Bragg re¯ections recorded on an area

detector during such an oscillation will be affected by the

existence of the G-re¯ected wave (kG), which is coherently

split from the incident wave (k0) and can be viewed as a new

incident wave. Thus, kG can produce its own diffracted beams

during an oscillation. Therefore, for each Bragg re¯ection (H)

excited by the original incident beam (k0), there exists another

re¯ection (HÿG) excited by kG, whose wavevector (kHÿG) is

parallel to the original kH of the H re¯ection. The two sets of

diffraction patterns, one excited by k0 and the other by the

reference beam kG, coincide in space and interfere with each

other, producing a phase-sensitive image on the area detector.

The three-beam interference between the diffracted wave

for the H re¯ection and the wave diffracted through re¯ec-

tions G and HÿG depends on the relative phase difference

[�HG of equation (2)], which is the triplet phase measured in

the reference-beam experiment. By applying Friedel's law and

changing variables, it is easy to show that the triplet structure

invariants (�HK) of direct methods and the triplet phases

(�HG) of multiple-beam diffraction are equivalent. Individual

estimates or measurements of triplet invariant values (!HK)

can be accommodated by a modi®ed tangent formula,

tan 'H �
P

K WHK sin�!HK ÿ 'K ÿ 'ÿHÿK�P
K WHK cos�!HK ÿ 'K ÿ 'ÿHÿK�

; �3�

or by a modi®ed minimal function,

R��� � 2
P
H;K

WHK

� �ÿ1P
H;K

WHKf�cos��HK� ÿ cos�!HK��2

� �sin��HK� ÿ sin�!HK��2g �4�

(Weeks et al., 1998). The WHK are appropriately chosen

weights and the �HK are computed from the current values of

the trial phases. Either of these relationships can serve as the

basis for a modi®ed Shake-and-Bake procedure.

Since all invariants measurable in a single reference-beam

experiment have a common re¯ection (G), it is important to

learn whether such an invariant set contains suf®cient infor-

mation that it could provide the basis for a successful Shake-

and-Bake application. This question was addressed in a series

of experiments that were conducted using simulated refer-

ence-beam data and are reported here. The effects of limited

resolution, as well as errors in the triplet phases, were also

examined. Finally, the results of dual-space (Shake-and-Bake)

re®nement based on these invariant sets were compared to the

results of reciprocal-space phase re®nement alone (conven-

tional direct methods).

2. Materials and methods

Reference-beam measurements were simulated using the

0.83 AÊ intensity data and re®ned phases for crambin, a 46

residue protein containing 327 unique non-H atoms as well as

the equivalent of about 75 fully occupied water molecules

(Teeter et al., 1993). The data were truncated to several

different resolutions (1.5, 2.0, 2.5 and 3.0 AÊ ), and the

remaining re¯ections with the largest structure-factor magni-

tudes �jFj� were chosen for use as simulated reference-beam

re¯ections (Gs). Among the seven re¯ections (724, 020, 404,

641Å , 205Å , 044 and 405Å) used as reference beams, the one with

highest resolution (3.56 AÊ ) was 044. All triplet invariants

involving each G were then generated provided that FH and

FHÿG were greater than three times their corresponding

standard deviations. Next, `error-free' values of the corre-

sponding triplet phases were computed using the known

values of the individual phases. Subsequently, a random-

number generator was used to assign uniformly distributed

errors to the triplet phases in such a way that sets of triplets

were created having mean triplet-phase errors of 10, 20, . . . ,

60�. Finally, sets of invariants involving more than one G

re¯ection were constructed by concatenating the desired

number of reference-beam data sets. Table 1 speci®es the

number of invariants used and the number of re¯ections that

could be phased with different numbers of reference-beam

data sets at each of the resolutions studied.

Phasing experiments were carried out with version 2.0 of

the computer program SnB (Weeks & Miller, 1999a) altered to

use the modi®ed tangent formula [equation (3)] as the means

for phase re®nement. In these experiments, the simulated
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Figure 1
Comparative representations of (a) direct-beam and (b) reference-beam
geometry. In the reference-beam set-up, two sets of diffraction patterns
(black and gray) interfere and create a phase-sensitive image.
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triplet-phase values were used as !HK and all weights (WHK)

were taken to be unity. Using standard Shake-and-Bake

protocol, 1000 initial trial structures were created, each of

which consisted of 125 randomly positioned atoms. Each trial

structure was re®ned at each of the four resolutions using

error-free triplet phases as well as the sets of triplet phases

having different amounts of random error. In each case, two

different phasing experiments were conducted. In the ®rst set

of experiments, 100 cycles of conventional direct-methods

phase re®nement were performed in reciprocal space alone.

The other set of experiments involved 100 cycles of dual-space

(Shake-and-Bake) re®nement in which modi®ed-tangent

phase re®nement was alternated with selection of the 125

largest peaks. The choice of 125 peaks for these experiments

was based on the observation that this is close to the optimum

number of selected peaks even for 0.83 AÊ data (Weeks &

Miller, 1999b) and it was expected that this number might

decrease at lower resolutions because fewer atoms were

expected to be clearly distinguished.

Solutions were unequivocally identi®ed on the basis of

mean phase error (i.e. lowest mean phase difference from the

correct phases for some choice of origin and enantiomorph).

Trials with mean phase errors less than 50� were counted as

`solutions' and the `success rate' for each experiment was

de®ned as the percentage of trial structures that re®ned to

solutions. The quantity

m��� � 1ÿ P
H;K

WHK

� �ÿ1P
H;K

WHK cos��HK ÿ !HK�; �5�

where �HK are the triplet phases computed using the SnB

re®ned phases and the !HK are the measured triplet phases,

can be computed without prior knowledge of the true phases,

and it was examined as a potential ®gure of merit.

3. Results

The results of the simulation experiments described above are

summarized in Fig. 2. First, it is apparent that, for crambin,

Shake-and-Bake solutions are obtainable from simulated

reference-beam data, even at a resolution as

low as 3 AÊ . At 1.5 AÊ , one reference-beam

data set (curve G1 in Fig. 2e) is suf®cient, but

more data sets are required as the resolution

decreases. The success rate decreases as the

mean triplet-phase error increases, and the

maximum tolerable mean triplet-phase error

is approximately 50�. The maximum toler-

able mean error also tends to increase as the

number of data sets increases but to

decrease as the resolution decreases. In

several cases, the success rate was fairly

constant until the mean error approached

40� but then it decreased rapidly.

It is also clear that the success rate is

higher, and the number of required data sets

less, if the dual-space re®nement technique (Shake-and-Bake)

is used rather than re®nement in reciprocal space alone. This is

true even at the lowest resolution tested (3 AÊ ). Thus, it

appears that using peak picking to place density in approxi-

mately correct positions has a bene®cial effect as a phase

constraint, even at resolutions this low. Not unexpectedly, the

average distance between each peak and the nearest true

atomic position increased as resolution decreased. Although

the effects of varying the number of peaks selected were not

studied in detail, several experiments were conducted with the

G3 invariant set at 2 AÊ . Success rates were found to be similar

when 125, 150 or 200 peaks were selected for inclusion in

subsequent structure-factor calculations, but they were

signi®cantly reduced when only 100 peaks were selected.

Further study is needed to determine the optimum number of

peaks as a function of resolution.

The lowest values of the ®nal mean individual phase

error were in the range of 40±45�, regardless of whether

reciprocal-space or dual-space re®nement was used. Since

relatively low values (0.60±0.68) of m��� [equation (5)]

were found to be strongly correlated with low values of the

mean phase error at all resolutions examined, m��� appears

to be a potentially useful ®gure of merit. When error-free

triplet phases were used, the lowest values of the mean

phase error were in the range 40±45�; when the mean

triplet-phase random errors were in the range 30±40�, the

best mean phase errors were only slightly larger (46±49�).

In general, m��� demonstrated greater discriminatory

power when it was applied to a larger number of reference-

beam data sets or higher-resolution data. There was a clear

distinction (i.e. a bimodal distribution) between the mean

phase errors for solutions (<50�) and nonsolutions (>70�) at

each of 1.5 and 2 AÊ . On the other hand, the mean phase-error

distribution was continuous (i.e. unimodal) at 2.5 AÊ unless the

G6 invariant set was used, and it was continuous for all G

values at 3 AÊ . The m��� distributions were also unimodal in

most of the cases tested. However, m��� still served as an

effective ®gure of merit in the sense that, at any resolution,

trial phase sets with relatively small average errors could be

identi®ed if the number of reference beams was chosen to be

suf®ciently large.

Table 1
Numbers of invariants used and re¯ections phased at each resolution with different numbers
of reference-beam data sets.

The total numbers of unique re¯ections that exist are 5543, 2391, 1238 and 734 at resolutions of 1.5,
2.0, 2.5 and 3.0 AÊ , respectively.

1.5 AÊ resolution 2.0 AÊ resolution 2.5 AÊ resolution 3.0 AÊ resolution

Data sets Re¯. Inv. Re¯. Inv. Re¯. Inv. Re¯. Inv.

1 5421 6725 2316 2591 1188 1125 681 544
2 5239 10626 2341 4217 1221 1902 719 956
3 5247 14537 2348 5834 1227 2664 725 1358
4 5250 21324 2351 8458 1231 3820 731 1917
5 5250 25095 2352 9994 1231 4531 731 2285
6 ± ± 2352 12525 1231 5615 731 2800
7 ± ± ± ± ± ± 731 3145



4. Conclusions

These Shake-and-Bake experiments involving simulated

reference-beam data for crambin have demonstrated that ®nal

phase values having average errors in the range 40±45� can be

obtained ab initio using the SnB program. Furthermore,

invariants having simulated average triplet-phase errors even

as large as 50� can be tolerated. Although it appears that more

than one reference re¯ection will be required when the

resolution is 2 AÊ or less, the required number of such re¯ec-

tions is not large. In higher-resolution cases, there is hope that

a single reference beam will provide suf®cient information

despite the fact that all triplet invariants in the set share a

common Bragg re¯ection. Furthermore, the actual mean

triplet phase error (20�) observed for multiple-beam

measurements for lysozyme is less than the maximum simu-

lated error (40±50�) used successfully in the current study. In

addition, an effective ®gure of merit has been found that

identi®es phase sets with low mean phase error and, therefore,

distinguishes solutions from nonsolutions. It is also especially

noteworthy that the peak-picking procedure used in the real-

space segment of the SnB program is effective at resolutions as

low as 3 AÊ provided that the triplet phase values used in the

reciprocal-space segment are suf®ciently accurate.
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Figure 2
SnB success rates using simulated reference-beam data for crambin.
(a)±(d) show the results of modi®ed tangent re®nement in reciprocal
space alone (conventional direct methods). (e)±(h) illustrate the results of
dual-space (Shake-and-Bake) re®nement. The labels G1 through G7
indicate the number of reference-beam data sets used. Comparison of
(a)±(d) with the corresponding (e)±(h) ®gures clearly shows the superior
performance of Shake-and-Bake relative to the conventional direct
methods.


